ANALYSIS OF VARIANCE (ANOVA)

ANOVA used to test the equality of more than two means. It is an extension of the hypothesis test for two means we have studied. The test value is computed by means of an ANOVA table.

SOURCE	SUM OF SQUARES (SS)	Degrees of Freedom (df)	MEAN SQUARE (MS)	F VALUE or F RATIO
Between means	SSB	k - 1	MSB	F (test statistic)
Within the means	SSW	n - k	MSW	not used
Total	SSTOT	n - 1	not used	not used

FIND:

- 1. \mathbf{k} = number of groups with n_i values in group i
- 2. \mathbf{n} = total number of data values

3.
$$\overline{X}$$
 (grand mean) = $\frac{\sum x}{n}$ (mean of all the data values)

- 4. Find mean $\bar{\mathbf{x}}_{i}$ and variance \mathbf{s}_{i}^{2} for each group separately
- 5. $SSB = \sum_{i} n_i (\overline{x}_i \overline{x})^2$
- 6. SSW = $\sum (n_i 1)s_i^2$
- 7. **SSTOT** = **SSB** + **SSW** (used as check value)
- 8. **Degrees of Freedom** = see table above

9.
$$MSB = \frac{SSB}{k-1}$$
 $MSW = \frac{SSW}{n-k}$

10.F (test statistic) =
$$\frac{MSB}{MSW}$$

HYPOTHESIS TEST FOR ANOVA

H_o: $\mu_1 = \mu_2 = \dots = \mu_k$ (k is number of populations) (treated as right-tailed test) **H₁:** at least one population mean is different from the others

Use given α level.

given α

Critical value: from Table V (pages A-6 to A-9). Use: df numerator = k-1

df denominator = n-k

Test value: use F-ratio for ANOVA table.

cv

Decision Rule: If test statistic > critical value, then reject H_o, otherwise accept H_O

ANOVA Example #1: In planning for future staffing, the ages of 19 hospital staff members were analyzed. Three groups (nurses, doctors, and x-ray techs) were chosen. At α = .05, can it be concluded that the average ages of the three groups differ?

Nurses	Doctors	X-ray Techs
23	60	33
25	36	28
26	29	35
35	56	29
42	32	23
22	54	41
	58	

Sum of data $\sum x_1$	173	
Mean \overline{x}_i	28.83	
St. deviation s _i	7.94	
No. of values n _i	6	

k =	
n =	
x =	

SOURCE	SUM OF SQUARES (SS)	Degrees of Freedom (df)	MEAN SQUARE (MS)	F VALUE
Between means				
Within a mean				not used
Total			not used	not used

		not usea	not used
H _o :			
H₁:			
α =			
Critical value:	Test valu	ıe:	
Decision:			
Calculations:			

ANOVA Example #2: Workers are randomly assigned to four machines on an assembly line. The number of defective parts produced by each worker for one day is recorded. At α =.01, test the claim that the mean number of defective parts produced by the workers is the same

Machine 1	Machine 2	Machine 3	Machine 4
3	3	5	9
2	3	7	9
0	2	8	8
4	0	6	8
4	1	4	1
3	4	5	2
5	7	5	0

Sum of data $\sum x_i$	21	20	
Mean x	3	2.857	
std. dev. s _i	1.633	2.268	
Variance s _i ²	2.667	5.144	
No. of values n _i	7	7	

K =	
N =	
x =	

SOURCE	SUM OF SQUARES (SS)	Degrees of Freedom (df)	MEAN SQUARE (MS)	F VALUE
Between				
means				
Within a mean				not used
Total			not used	not used

H₀:	
H₁:	
α =	
Critical value:	Test value:
Decision:	
Calculations:	